Qwen 1.5 14B Chat
Model ID: qwen/qwen-1.5-14b-chat
Provider: Qwen - Alibaba's Qwen family
Canonical Slug: qwen/qwen-1.5-14b-chat
Overview
Qwen 1.5 14B is a chat-optimized variant of Alibaba's Qwen 1.5 model family with 14 billion parameters. It provides strong performance on conversational tasks with good balance between speed and quality.
Specifications
| Specification | Value |
|---|---|
| Context Window | 32,768 tokens |
| Max Output Tokens | 32,768 |
| Modality | text->text |
| Model Architecture | text to text |
| Release Date | 1707000000 |
Pricing
| Metric | Price |
|---|---|
| Prompt Cost | $0.15 per 1M tokens |
| Completion Cost | $0.15 per 1M tokens |
| Currency | USD |
Capabilities
- Text Generation
- Instruction Following
Supported Parameters
The model supports the following parameters in API requests:
- temperature: Controls randomness (0.0 - 2.0), default: 1.0
- top_p: Nucleus sampling (0.0 - 1.0), default: 1.0
- top_k: Top-k filtering
- frequency_penalty: Reduces repetition (-2.0 to 2.0)
- presence_penalty: Encourages new topics (-2.0 to 2.0)
- repetition_penalty: Alternative repetition control (0.5 - 2.0)
- stop: Stop sequences
- seed: Random seed for reproducibility
- max_tokens: Maximum output length
API Usage Example
curl -X POST https://api.langmart.ai/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "qwen/qwen-1.5-14b-chat",
"messages": [
{
"role": "user",
"content": "Explain quantum computing in simple terms"
}
],
"temperature": 1.0,
"max_tokens": 32768,
"top_p": 1.0
}'
Performance Metrics
Speed & Quality Tradeoff
- Inference Speed: Fast
- Quality Tier: Advanced
- Cost Efficiency: Optimized for production
Recommended Use Cases
- Long-form text generation
- Code generation and analysis
- Conversational AI
- Complex reasoning tasks
- Information synthesis
Related & Alternative Models
From Same Provider
- qwen/qwen3-max
- qwen/qwen3-coder-plus
- qwen/qwen-2.5-72b-instruct
- qwen/qwen-2.5-32b-instruct
- qwen/qwen-2.5-14b-instruct
Comparable Models from Other Providers
- OpenAI: GPT-4 Turbo, GPT-4o
- Anthropic: Claude 3.5 Sonnet
- Google: Gemini 2.0 Flash
- DeepSeek: DeepSeek-R1
Python Integration
import anthropic
client = anthropic.Anthropic(
api_key="YOUR_API_KEY",
base_url="https://api.langmart.ai/v1"
)
message = client.messages.create(
model="qwen/qwen-1.5-14b-chat",
max_tokens=32768,
messages=[
{
"role": "user",
"content": "Your prompt here"
}
]
)
print(message.content[0].text)
JavaScript/Node.js Integration
import OpenAI from "openai";
const openai = new OpenAI({
apiKey: process.env.LANGMART_API_KEY,
baseURL: "https://api.langmart.ai/v1",
});
const completion = await openai.chat.completions.create({
model: "qwen/qwen-1.5-14b-chat",
messages: [
{
role: "user",
content: "Your prompt here",
},
],
max_tokens: 32768,
});
console.log(completion.choices[0].message.content);
Performance Notes
Strengths
- Efficient inference with good quality
- Well-suited for production workloads
- Strong instruction-following ability
- Balanced performance and cost
Considerations
- Context length may be limited for very long documents
- Specialized for specific tasks
Additional Information
- Hugging Face Model: Not available
- License: Open or Commercial (depends on provider)
- Streaming: Supported
- Function Calling: Depends on model configuration
- Vision Capabilities: No
- Web Search: No
Availability & Status
- LangMart Status: Available
- Rate Limits: Standard LangMart limits apply
- SLA: Subject to provider availability
Documentation Generated: 2025-12-24
Source: LangMart API & Public Documentation
Last Updated: December 2025