Nous: Hermes 2 Mixtral 8x7B DPO
Description
Nous Hermes 2 Mixtral 8x7B DPO is the flagship Nous Research model trained over the Mixtral 8x7B MoE LLM. The model was trained on over 1,000,000 entries of primarily GPT-4 generated data, as well as other high quality data from open datasets across the AI landscape, achieving state of the art performance on a variety of tasks.
Pricing
Input Pricing: Not disclosed on platform
Output Pricing: Not disclosed on platform
Note: Check LangMart pricing page for current rates
Capabilities
- Text-to-text inference
- ChatML instruction format
- Direct Preference Optimization (DPO) tuning
- Mixture of Experts routing
- Function calling support
- Structured output generation
- Multi-turn conversations
Related Models
nousresearch/hermes-3-llama-3.1-405b- Latest Hermes model on Llama 3.1mistralai/mixtral-8x7b-instruct- Base Mixtral modelnousresearch/nous-hermes-2-mixtral-8x7b-sft- SFT version without DPO
Model Information
Model ID (API): nousresearch/nous-hermes-2-mixtral-8x7b-dpo
Provider: Nous Research
Release Date: January 16, 2024
Model Architecture: Mixture of Experts (MoE) - Mixtral 8x7B base
Parameters: 8x7B (56B effective)
Context Window: 32,768 tokens
Input/Output Specifications
Input Modalities: Text
Output Modalities: Text
Instruction Format: ChatML
Stop Sequences:
<|im_start|><|im_end|><|endoftext|>
Performance Metrics
- Training Data: 1,000,000+ high-quality entries
- Data Mix: Primarily GPT-4 generated with open-source datasets
- Optimization Method: Direct Preference Optimization (DPO)
- Recent Activity: Limited usage data available
Model Capabilities & Features
Supported Parameters
- Temperature control
- Top-p sampling
- Stop sequences
- Max tokens
- Frequency/presence penalties
Strengths
- Excellent reasoning capabilities
- Strong instruction following
- Code generation abilities
- Improved performance from DPO tuning
- Effective with function calling
- Good multi-turn conversation handling
API Usage
LangMart Endpoint
POST https://api.langmart.ai/v1/chat/completions
Request Format (OpenAI-Compatible)
{
"model": "nousresearch/nous-hermes-2-mixtral-8x7b-dpo",
"messages": [
{
"role": "system",
"content": "You are a helpful AI assistant."
},
{
"role": "user",
"content": "Hello, how are you?"
}
],
"temperature": 0.7,
"max_tokens": 1024
}
cURL Example
curl https://api.langmart.ai/v1/chat/completions \
-H "Authorization: Bearer $LANGMART_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "nousresearch/nous-hermes-2-mixtral-8x7b-dpo",
"messages": [
{
"role": "user",
"content": "Explain the concept of mixture of experts in machine learning."
}
]
}'
Python Example
import openai
client = openai.OpenAI(
base_url="https://api.langmart.ai/v1",
api_key="YOUR_LANGMART_API_KEY"
)
response = client.chat.completions.create(
model="nousresearch/nous-hermes-2-mixtral-8x7b-dpo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is DPO training?"}
],
temperature=0.7,
max_tokens=1024
)
print(response.choices[0].message.content)
LangMart Usage
curl -X POST https://api.langmart.ai/v1/chat/completions \
-H "Authorization: Bearer sk-your-api-key" \
-H "Content-Type: application/json" \
-d '{
"model": "nousresearch/nous-hermes-2-mixtral-8x7b-dpo",
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
Configurable Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
temperature |
float | 1.0 | Controls randomness (0.0-2.0) |
max_tokens |
integer | - | Maximum tokens to generate |
top_p |
float | 1.0 | Nucleus sampling parameter |
top_k |
integer | - | Top-k sampling parameter |
frequency_penalty |
float | 0.0 | Penalize frequent tokens |
presence_penalty |
float | 0.0 | Penalize repeated tokens |
stop |
array | - | Custom stop sequences |
ChatML Format
This model uses the ChatML instruction format:
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
Hello!<|im_end|>
<|im_start|>assistant
Hello! How can I help you today?<|im_end|>
Available Providers
This model is available through various inference providers including:
- OpenRouter
- Together AI
- Fireworks AI
- Other providers hosting Mixtral-based models
Training Details
- Training Method: Direct Preference Optimization (DPO)
- Training Data: Over 1,000,000 entries
- Data Sources: Primarily GPT-4 generated data + high-quality open datasets
- Architecture: 8 experts with 7B parameters each, 2 experts active per inference
Resources
Last updated: December 2024 Source: LangMart