FLUX.1 [schnell] - Black Forest Labs
Model Overview
| Property |
Value |
| Model Name |
FLUX.1 [schnell] |
| Model ID |
black-forest-labs/FLUX.1-schnell |
| Creator |
Black Forest Labs |
| Type |
Text-to-Image Diffusion Model |
| Architecture |
Rectified Flow Transformer |
| Parameters |
12 billion |
| License |
Apache 2.0 |
| Training Method |
Latent Adversarial Diffusion Distillation |
Description
FLUX.1 [schnell] is Black Forest Labs' fastest image generation model, a 12 billion parameter rectified flow transformer capable of generating high-quality images from text descriptions. Trained using latent adversarial diffusion distillation, it delivers cutting-edge output quality and competitive prompt following that matches the performance of closed-source alternatives.
The model is specifically tailored for local development and personal use, offering lightning-fast inference with sub-second generation times in just 1-4 denoising steps.
Pricing
Replicate
- Per Image: ~$0.003 per image ($3 per 1,000 images)
- Per Second Runtime: $0.001525/second
- Median Cost (p50): $0.0015
fal.ai
- Per Megapixel: $0.003
- Billing: Rounded up to nearest megapixel
- No subscription fees or minimum commitments
Supported Parameters
Core Parameters
| Parameter |
Type |
Default |
Range/Options |
Description |
prompt |
string |
required |
- |
Text description for image generation |
num_inference_steps |
integer |
4 |
1-4 |
Denoising steps (4 recommended, lower = faster but lower quality) |
guidance_scale |
float |
0.0-3.5 |
0.0-20.0 |
CFG scale for prompt adherence |
seed |
integer |
random |
any |
Random seed for reproducible generation |
num_outputs |
integer |
1 |
1-4 |
Number of images to generate |
max_sequence_length |
integer |
256 |
- |
Maximum prompt token length |
Image Size Parameters
| Parameter |
Type |
Default |
Options |
aspect_ratio |
string |
1:1 |
1:1, 16:9, 21:9, 3:2, 2:3, 4:5, 5:4, 3:4, 4:3, 9:16, 9:21 |
megapixels |
string |
1 |
0.25, 1 |
image_size |
string |
square |
square_hd, square, portrait_4_3, portrait_16_9, landscape_4_3, landscape_16_9 |
Output Parameters
| Parameter |
Type |
Default |
Options |
Description |
output_format |
string |
webp |
webp, jpg, png |
Image file format |
output_quality |
integer |
80 |
0-100 |
JPEG/WebP quality (PNG ignores this) |
| Parameter |
Type |
Default |
Description |
go_fast |
boolean |
true |
Use fp8 quantized model for faster inference |
acceleration |
string |
- |
Speed optimization: "none", "regular", "high" |
enable_safety_checker |
boolean |
true |
Content safety filtering |
Key Features
- Ultra-Fast Inference: Generates high-quality images in only 1-4 steps with sub-second results
- Cutting-Edge Quality: Output quality matches closed-source alternatives
- Competitive Prompt Following: Strong adherence to text prompts
- Flow-Based Distillation: Optimized for ultra-fast inference
- Commercial Ready: Apache 2.0 license allows personal, scientific, and commercial use
Limitations
- Not Factual: Not intended to provide factual information
- Societal Biases: May amplify existing societal biases
- Prompt Sensitivity: Prompt following heavily influenced by prompting style
- Failure Cases: May fail to generate output matching prompts in some cases
API Endpoints
Replicate
- Endpoint:
https://api.langmart.ai/v1/predictions
- Model:
black-forest-labs/flux-schnell
fal.ai
- Endpoint:
fal-ai/flux/schnell
- SDK:
@fal-ai/client
BFL API (Official)
FLUX.1 Family
- FLUX.1 [dev]: Higher quality, non-commercial license
- FLUX.1 [pro]: Production-grade via BFL API
- FLUX.1 Fill [dev]: In/out-painting capabilities
- FLUX.1 Canny [dev]: Edge detection conditioning
- FLUX.1 Depth [dev]: Depth map conditioning
- FLUX.1 Redux [dev]: Image variation generation
- FLUX.1 Kontext [dev]: In-context image editing
FLUX.2 Family (Latest)
- FLUX.2 [max]: Highest capability, best editing consistency
- FLUX.2 [pro]: Production-grade, 4MP resolution
- FLUX.2 [flex]: Accessible variant
- FLUX.2 [klein]: Apache 2.0 licensed
| Metric |
Value |
| Inference Steps |
1-4 (4 recommended) |
| Generation Time |
~0.83 seconds (typical) |
| Total Run Time |
~0.84 seconds |
| Hardware |
NVIDIA H100 GPU (Replicate) |
| Data Precision |
bfloat16 (bf16) |
| Total Runs |
576.4M+ (Replicate) |
Hardware Requirements
- Recommended GPU: NVIDIA with CUDA support
- VRAM: Can use CPU offloading to reduce VRAM requirements
- Data Type: bfloat16 recommended for optimal performance
- Local Deployment: Suitable for local development environments
Usage Examples
Python (Diffusers)
import torch
from diffusers import FluxPipeline
# Load the model
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload() # Reduce VRAM usage
# Generate image
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("flux-schnell.png")
JavaScript/TypeScript (fal.ai)
import { fal } from '@fal-ai/client'
fal.config({ credentials: 'YOUR_FAL_KEY' })
const result = await fal.subscribe('fal-ai/flux/schnell', {
input: {
prompt: "A serene mountain landscape at sunset",
num_inference_steps: 4,
image_size: "landscape_16_9"
}
})
Installation
# Python (Diffusers)
pip install -U diffusers torch
# JavaScript (fal.ai)
npm install --save @fal-ai/client
Model Capabilities
| Capability |
Supported |
| Text-to-Image |
Yes |
| Batch Generation |
Yes (up to 4 images) |
| Reproducible Seeds |
Yes |
| Custom Aspect Ratios |
Yes |
| Multiple Output Formats |
Yes (WebP, JPG, PNG) |
| CPU Offloading |
Yes |
| Safety Filtering |
Yes (optional) |
Prohibited Uses
- Violations of applicable laws
- Exploitation or harm to minors
- Generation of false information intended to harm
- Creation of non-consensual nudity or illegal content
- Harassment, abuse, stalking, or bullying
- Automated decision-making affecting legal rights
- Large-scale disinformation campaigns
Availability
- Downloads: 702,738+ last month
- Likes: 4,470+
- Community Discussions: 196+
- Spaces Using Model: 100+
- Adapter Models: 261
- Fine-tunes: 57
- Quantizations: 27
Black Forest Labs is a frontier AI research laboratory focused on visual intelligence, headquartered in Germany. The company recently completed a $300 million Series B funding round.
References
Last Updated: December 2025